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Abstract

Gómez Ardila, Luis Antonio; Tomei, Carlos (Advisor). Deep Mo-
rin Singularities of the McKean-Scovel Operator. Rio de
Janeiro, 2021. 54p. Tese de Doutorado – Departamento de Mate-
mática, Pontifícia Universidade Católica do Rio de Janeiro.

The McKean-Scovel operator is the simplest nonlinear Sturm-Liouville
operator acting on functions satisfying Dirichlet boundary conditions: its
nonlinearity is just taking the square of the incoming function. This text
contains a proof of a conjecture from the late ´80: its critical set consists
only of Morin singularities, which attain arbitrary depth.

Keywords
Operator; Critical Points; Singularities; McKean-Scovel; Morin; Arbi-

trary Depth.
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Resumo

Gómez Ardila, Luis Antonio; Tomei, Carlos. Singularidades de
Morin Profundas do Operador McKean-Scovel. Rio de Ja-
neiro, 2021. 54p. Tese de Doutorado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

O operador de McKean-Scovel agindo sobre funções que satisfazem con-
dições de Dirichlet é o operador não-linear de Sturm-Liouville mais simples:
a não-linearidade é elevar ao quadrado. Nesse texto, demonstra-se uma conje-
tura que de mais de trinta anos: seu conjunto crítico só contém singularidades
de Morin, que podem ter profundidade arbitrária.

Palavras-chave
Operador; Pontos Críticos; Singularidades; McKean-Scovel; Morin;

Profundidade Arbitrária.
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Functions, just like living beings,
are characterized by their
singularities.

Paul Montel
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0
Basic Notation

• N, N0 and R are the positive integers, non-negative integers and real
numbers, respectively.

• ‖·‖sup denotes the supremum norm (or uniform norm) on C([a, b]).

• Norm and inner product on L2([a, b]) are denoted by ‖·‖ and 〈·, ·〉.

• If V is an inner product space, 〈·, ·〉V denotes its inner product and ‖·‖V
the induced norm.

• A function w : [a, b] → R is Dirichlet if it satisfies Dirichlet boundary
conditions, w(a) = w(b) = 0.

• The function u : [a, b] → R is absolutely continuous if and only if there
exists v ∈ L1([a, b]) such that

u(x) = u(a) +
∫ x

a
v(t) dt, x ∈ [a, b].

The function v is denoted by u′.

• AC([a, b]) = {u : [a, b]→ R | u is absolutely continuous}.

• H1([a, b]) = {u ∈ AC([a, b]) | u′ ∈ L2([a, b])}.

• H1
0 ([a, b]) = {u ∈ H1([a, b]) | u(a) = u(b) = 0} is a Hilbert space with the

inner product 〈u, v〉H1
0
··= 〈u′, v′〉L2 . The norm ‖·‖H1

0
induced by 〈u, v〉H1

0

is equivalent to ‖·‖H1 on H1
0 ([a, b]).

• H2
D([a, b]) = H2([a, b]) ∩H1

0 ([a, b]) = {u ∈ H1
0 ([a, b]) | u′ ∈ H1([a, b])}.

• For real Banach spaces E1, E2,

B(E1, E2) = {T : E1 → E2 | T is linear continuous}

with the usual operator norm, ‖T‖ = sup‖v‖=1 ‖Tv‖.

• For a differentiable map G : E1 → E2, the derivative (Jacobian) of
G at the point u ∈ E1 is denoted by DG(u) ∈ B(E1, E2). For every
nonzero v ∈ E1, the directional derivative of G at u ∈ E1 along v is
∂vG(u) = DG(u) · v.
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Chapter 0. Basic Notation 11

• For a real Hilbert space H and a differentiable functional ϕ : H → R, the
gradient gradϕ(u) ∈ H is the only element of H such that Dϕ(u) · v =
〈gradϕ(u), v〉H for every v ∈ H.

• For a real valued map f , Z(f) denotes the zero set of f ,

Z(f) = {u ∈ Dom(f) | f(u) = 0}.

• For M a smooth manifold and p ∈M , TpM stands for the tangent space
of M at the point p.

• The prime ′ stands for the derivative in the real variable x
(
i.e., ′ = d

dx

)
.

• A function f is an o(xn)-function, f = o(xn), as x→ 0 if and only if

lim
x→0

∣∣∣f(x)
xn

∣∣∣ = 0.

• For C1 functions f, g : [a, b] → R, the Wronskian of f and g is the
function [f, g] : [a, b]→ R defined by [f, g](x) = f(x)g′(x)− f ′(x)g(x).
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1
Introduction

The Ambrosetti-Prodi theorem [1] has been the starting point of active
research for decades. After contributions by Manes-Micheletti [2] and Berger-
Podolak [3], it may be stated as follows. For Ω ⊂ Rn, a bounded domain with
smooth boundary, consider the Dirichlet Laplacian

−∆ : X = H2(Ω) ∩H1
0 (Ω)→ Y = L2(Ω)

with eigenvalues
λ1 < λ2 ≤ λ3 ≤ · · · .

Given a smooth, strictly convex function f : R→ R satisfying

a = lim
x→−∞

f ′(x) < λ1 < lim
x→+∞

f ′(x) = b < λ2,

define
F : X → Y, u 7→ −∆u+ f(u).

Theorem 1.0.1 The map F is a global fold. More explicitly, there are global
homeomorphisms defined on X and Y which convert F to the map

G : Z × R→ Z × R
(z, t) 7→ (z, t2),

for some real Banach space Z.

It is a wonderful fact that a nonlinear differential operator may admit
such a simple description of its global geometry, possibly the simplest if we
exclude homeomorphisms. The different arguments leading to the result em-
phasized the importance of local theory: the map is not a local homemomor-
phism at each point of its domain. But such critical points turned out to be
the simplest possible deviations from the inverse function theorem: within the
classification from singularity theory, they are folds.

The search for additional contexts led to further examples in which global
geometry may still be described in simple terms (Church-Timourian folds [4])
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Chapter 1. Introduction 13

and others in which different singularities were identified (Church-Timourian
cusps [4, 5, 14, 15]).

One interesting case was suggested by McKean and Scovel [6]. Set
X = H2

D([0, 1]) and Y = L2([0, 1]). The McKean-Scovel operator F : X → Y

is
F (u) = −u′′ + 1

2u
2.

Let C denotes the critical set of F ,

C = {u ∈ X | DF (u) ∈ B(X, Y ) is non-invertible}.

In opposition to the situation in the Ambrosetti-Prodi theorem, the nonlin-
earity f(x) = 1

2x
2 interacts with all eigenvalues of the linear term. The one-

dimensional context ensures that critical points (i.e., points in C) are poten-
tially simple: the dimension of the kernel of the derivative DF (u) : X → Y

is never larger than one. With an additional requirement of transversality
described in detail in Section 2.3, such critical points are called Morin singu-
larities ([17, 21]).

Morin singularities are classified by their depth: after local changes of
variable (see [9, 14] for the infinite-dimensional case), the function F near a
singularity of depth k takes the form

(z, s1, . . . , sk−1, t) ∈ Z × Rk 7→

(z, s1, . . . , sk−1, t
k+1 + s1t

k−1 + s2t
k−2 + · · ·+ sk−1t) ∈ Z × Rk.

(1.1)

In [7] McKean presented a proof that F has Morin singularities of
arbitrary depth. Unfortunately, Ruf identified an error [8], and the original
claim became a conjecture. In this thesis we vindicate it.

Theorem 1.0.2 A. Every critical point of F is a Morin singularity.

B. Any dense subspace D ⊂ X contains singularities of arbitrary depth.

Deeper singularities did not receive as much attention as folds and
cusps, the first two cases in the hierarchy of Morin singularities. Theoretical
aspects – specifically, the counterpart of the usual characterization for infinite
dimensional spaces — have been clarified in [9] and [14]. Conditions yielding
existence of arbitrarily deep singularities for operators F (u) = −u′ + f(u)
acting on periodic functions were obtained in [14], solving a conjecture of
Cafagna-Donati [10].

The first step in the proof of Theorem 1.0.2 is identifying Morin singu-
larities of depth k in a concrete fashion. As we shall see in Sections 2.3 and 3.2,
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Chapter 1. Introduction 14

there are real smooth maps Mi : X → Ri, i = 1, 2, . . . , for which u ∈ X is a
Morin singularity of depth k if and only if

(i) Mk(u) = 0, Mk+1(u) 6= 0,

(ii) Zero is a regular value of Mk, i.e., DMk(u) : X → Rk is surjective.

In Section 2.3.2 we prove that for each critical point u there is j ∈ N
such that Mj(u) 6= 0. Thus every singularity of F is indeed of Morin type.

In Chapter 4, we show that every Mk has a root in X. The maps Mk

admit real smooth extensions M̂k : H−1([0, 1])→ Rk (Section 4.1). We are then
led to consider solutions defined by finite sums of deltas ∑j cjδxj

, xj ∈ (0, 1).
In Proposition 2.3.4 we present juxtaposition: from two functions in adjacent
intervals which are zeros of the M̂k´s, we juxtapose domains and rescale the
resulting interval back to [0, 1] so as to obtain not only another zero of M̂k,
but a curve of zeros by inserting a δ of arbitrary weight at the juncture of both
domains. Iteration of this process leads to zeros of M̂k with additional degrees
of freedom. The difficulty now lies in identifying appropriate weights to such
degrees of freedom to obtain a root of M̂k+1. Odd values k are easier to handle
(Proposition 4.2.3). When k is even, there are specific locations xs ∈ (0, 1) - the
points of adjustment of Section 4.4 - for which the insertion of a weighted δxs

suffices to obtain a root u∗ of M̂2k+1. A transversality argument then implies
that u∗ may be perturbed so as to obtain a root of M2k+1 on arbitrary dense
subspaces of X, and those are indeed Morin singularities of depth larger than k
of F . A substantial amount of symbolic computation led us to the construction
of deep singularities. Some examples are shown in Section 4.3.

Propositions 2.3.5 and 3.1.1 are of a strong algebraic nature. Extending
the result for additional nonlinearities would require a different approach.
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2
Morin Singularities

For X = H2
D([0, 1]) and Y = L2([0, 1]), the McKean-Scovel operator is

F : X → Y, F (u) = −u′′ + 1
2u

2.

Morin singularities of the McKean-Scovel operator are described in terms
of eigenvalues and eigenvectors of its Jacobians DF (u).

In Section 2.1 we encapsulate some standard spectral properties ofDF (u)
(see [6, 20, 22, 23]). In Section 2.2, we introduce the critical set C of F . Deeper
singularities are defined in Section 2.3.

2.1
Spectral Properties of DF

Let Mu : X → Y be the operator of multiplication by u.

Proposition 2.1.1 The map F : X → Y is proper, (real) analytic and its
derivative at each u ∈ X is the bounded operator

DF (u) : X → Y, DF (u) = − d2

dx2 +Mu.

DF (u) : X ⊂ Y → Y is a self-adjoint operator and its spectrum σ(DF (u))
consists of simple eigenvalues converging to infinity,

λ1(u) < λ2(u) < · · · < λn(u) < · · · → +∞.

Let φn(u) be the eigenfunction associated with λn(u), normalized so as
‖φn(u)‖ = 1 (in the L2-norm) and φn(u)′(0) > 0. It has n− 1 simple zeros in
the open interval (0, 1). The operator DF (u) : X → Y is Fredholm of index
zero, with dim ker(DF (u) − λn(u)) = 1. The eigenmaps u ∈ X 7→ λn(u) ∈ R
and u ∈ X 7→ φn(u) ∈ X are smooth and, for each u, v ∈ X, v 6= 0,

∂vλn(u) =
〈
φn(u)2, v

〉
, (2.1)

(DF (u)− λn(u)) · ∂vφn(u) = −vφn(u) + [∂vλn(u)]φn(u). (2.2)
On lines of X, the eigenvalue maps restrict to real analytic maps.
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Chapter 2. Morin Singularities 16

2.2
The Critical Set C

Let C denote the critical set of F ,

C = {u ∈ X | DF (u) ∈ B(X, Y ) is non-invertible}

= {u ∈ X | dim kerDF (u) = 1}

= {u ∈ X | ∃ ϕ ∈ X \ {0}, −ϕ′′ + uϕ = 0}.

Define the zero set Cn = {u ∈ X | λn(u) = 0} of the eigenmap λn. The
following result is a small variation of a theorem in [6].

Proposition 2.2.1 Each Cn is a smooth submanifold of X of codimension
one. The sets are disjoint and isolated from each other. The critical set
C = ⋃

n∈N Cn also is a smooth submanifold of X of codimension one.

Proof. The set Cn is nonempty and connected – as is shown in Theorem C
[13], it is a graph over the orthogonal complement of sin(πx). For u ∈ Cn,
from Proposition 2.1.1, the eigenfunction φn(u) has n + 1 (simple) zeros in
[0, 1]: the sets Cn are disjoint. As φn(u) 6= 0, from equation (2.1) we have that
Dλn(u) is nonzero and therefore, by the Implicit Function Theorem, Cn is a
smooth submanifold of X of codimension one. In particular, close to u ∈ Cn,
one cannot have λm(u) = 0 for m 6= n: the sets are isolated, so that C is also
a manifold. �

2.3
Morin Singularities of F

We recall the definition of a Morin singularity of depth k. The geometric
definition yields a set of equations characterizing such singularities for the map
F .

2.3.1
The Thom-Boardman Stratification of the Critical Set

Given a smooth map F : X → Y , we stratify its critical set according
to the Thom-Boardman symbols [21]. Here, X and Y are real Banach spaces,
and we suppose that Jacobians DF (u) : X → Y are Fredholm operators of
index zero. Define the Thom set ΣJ for a multi-index J with entries in N0. For
i ∈ N0,

Σi = Σi(F ) = {u ∈ X | dim kerDF (u) = i}.
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Chapter 2. Morin Singularities 17

For i1, i2 ∈ N0 with i1 ≥ i2, if Σi1 is a manifold, set

Σi1,i2 = Σi2(F �Σi1 ).

Inductively, suppose J = (i1, . . . , ik) is a non-increasing sequence in N0 and
ΣJ is a manifold. Then, for ik+1 ∈ N0 with ik ≥ ik+1,

Σi1,...,ik,ik+1 = Σi1,...,ik,ik+1(F ) = Σik+1 (F �ΣJ ) .

Clearly, if Σi1,...,ik is a manifold and ik ≥ ik+1 then

Σi1,...,ik ⊇ Σi1,...,ik,ik+1 .

We are interested in very special multi-indices: for the McKean-Scovel
operator F , we have dim kerDF (u) ≤ 1. Since Σ1 = C is a manifold, Σ1,1

makes sense.
Set [k] = (1, . . . , 1) ∈ Rk. For k ≥ 1, if Σ[k] is a manifold, the set of Morin

singularities of depth k is
Sk = Σ[k] \ Σ[k+1].

The set of all Morin singularities is S = ⋃
k∈N Sk. Clearly S ⊆ C.

In the notation above, Theorem 1.0.2 becomes

Theorem 2.3.1 (A) Every critical point of F is a Morin singularity, C = S.

(B) There are singularities of arbitrary depth: Sk 6= ∅ for every k ∈ N.

2.3.2
Morin Singularities as Level Sets

Define Σ[0] = X. The Thom-Boardman stratification may be described as
the zero-levels of a set of functionals: Σ[k] = Z(Ik), the zero set of appropriate
Ik : Σ[k−1] → R.

To verify if u∗ ∈ X is a Morin singularity of the map F , we first check
if u∗ is critical, i.e, if u∗ is a zero of the eigenvalue map u 7→ λn(u) for some
n ∈ N. Set λ = λn and φ = φn. If Σ[1] = C is a manifold (which is the case for
the map F ), we proceed to verify if u∗ ∈ Σ[2], i.e., if φ(u∗) lies in Tu∗C, i.e., if
u∗ is a zero of the map u 7→ ∂φ(u)λ(u). Iteration of this argument suggests the
definitions

I1 : Σ[0] → R, u 7→ I1(u) = λ(u),

and, for k ≥ 1, if Σ[k] is a manifold,
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Chapter 2. Morin Singularities 18

Ik+1 : Σ[k] → R, u 7→ Ik+1(u) = ∂φ(u)Ik(u) = ∂
(k)
φ(u)λ(u).

The above definition makes sense: u ∈ Σ[k] implies that φ(u) belongs to
TuΣ[k−1] and so directional derivatives of the restrictions Ik are well defined.

Proposition 2.3.2 For k ≥ 0, if Σ[k] is a manifold then

Σ[k+1] = Z(Ik+1) =
{
u ∈ X | ∂(0)

φ(u)λ(u) = · · · = ∂
(k)
φ(u)λ(u) = 0

}
.

Proof. The statement is true for k = 0 since Σ[1] = {u ∈ X | λ(u) = 0} = Z(I1).
Assume it is true for some k ≥ 0 and suppose Σ[k] is a manifold. Then

Σ[k+1] =
{
u ∈ Σ[k] | φ(u) ∈ TuΣ[k]

}
=
{
u ∈ Σ[k] | φ(u) ∈ TuZ(Ik)

}
=
{
u ∈ Σ[k] | DIk(u) · φ(u) = 0

}
=
{
u ∈ Σ[k] | ∂φ(u)Ik(u) = 0

}
=
{
u ∈ Σ[k] | Ik+1(u) = 0

}
= Z(Ik+1).

�

At some point, we must prove that the sets Σ[k] are indeed (nested)
manifolds. A simple modification of the above construction gives a geometric
perspective. Since the maps I1 = λ : X → R and φ : X → X are smooth,
globally defined, the functionals Ik : Σ[k−1] → R admit an obvious extension
Ĩk : X → R,

Ĩ1 = I1 , Ĩk+1(u) = ∂
(k)
φ(u)λ(u) = ∂φ(u)Ĩk(u).

Set
Mk : X → Rk, u 7→

(
Ĩ1(u), . . . , Ĩk(u)

)
,

and Z(Mk) = M−1
k (0). If zero is a regular value of Mk, then Z(Mk) is a

submanifold ofX of codimension k, and then clearly Z(Mk) = Σ[k]. We already
know that Z(M1) = Cn. Clearly

Z(M1) ⊃ Z(M2) ⊃ Z(M3) ⊃ · · · .

Theorem 1.0.2 in this notation corresponds to the following statements.

Theorem 2.3.3 For each u ∈ X:

i) Zero is a regular value of Mk.

ii) u ∈ Sk if and only if Mk(u) = 0 and Mk+1(u) 6= 0.

iii) If u ∈ C, there exists j ∈ N such that Mj(u) 6= 0.

iv) For each k ∈ N, Z(Mk) 6= ∅.
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Chapter 2. Morin Singularities 19

From (i), the sets Z(Mk) are manifolds of codimension k and Z(Mk) =
Σ[k]. Item (ii) characterizes Morin singularities of depth k in terms of Mk and
Mk+1. Items (iii) and (iv) are respectively parts (A) and (B) of Theorem 1.0.2.

To obtain a more concrete description of the maps Mk, take successive
directional derivatives along φ(u) of the eigenvalue equation

DF (u) · φ(u) = −φ(u)′′ + u φ(u) = λ(u)φ(u). (2.3)

To simplify notation define the maps zk : X → X,

z1(u) = φ(u), zk+1(u) = ∂
(k)
φ(u) z1(u) = ∂φ(u)zk(u),

together with the functions rk : X → X,

r1 ≡ 0, rk+1(u) = z1(u)zk(u) + ∂φ(u)rk(u).

The functions zj(u) are Dirichlet.

Proposition 2.3.4 For each u ∈ X, and all j ∈ N,

−zj(u)′′ + u zj(u) = −rj(u) +
j−1∑
i=0

(
j−1
i

)
Ĩi+1(u)zj−i(u), (2.4)

where
rj+1(u) =

j∑
i=1

(
j
i

)
zi(u)zj+1−i(u). (2.5)

If u ∈ Z(Mk) then −zj(u)′′ + u zj(u) = −rj(u), j = 1, . . . , k,
−zk+1(u)′′ + u zk+1(u) = −rk+1(u) + Ĩk+1(u) φ(u).

(2.6)

Moreover,
Ĩk+1(u) = 〈rk+1(u), φ(u)〉. (2.7)

Proof. The formula for rp is clear for p = 2. We drop the obvious dependence
on u and verify the formula for rp+1 from rp:

rp+1 = z1zp + ∂φrp = z1zp + ∂φ

p−1∑
i=1

(
p−1
i

)
zizp−i


= z1zp +

p−1∑
i=1

(
p−1
i

)
zi+1zp−i +

p−1∑
i=1

(
p−1
i

)
zizp+1−i

= z1zp +
p∑
i=2

(
p−1
i−1

)
zizp+1−i +

p−1∑
i=1

(
p−1
i

)
zizp+1−i

= z1zp +
p−1∑
i=2

[(
p−1
i−1

)
+
(
p−1
i

)]
zizp+1−i + p z1zp

= z1zp +
p−1∑
i=2

(
p
i

)
zizp+1−i + p z1zp =

p∑
i=1

(
p
i

)
zizp+1−i.
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The differential equation is obtained by taking successive derivatives of
the eigenvalue equation (2.3) at u along φ(u).

For u ∈ Z(Mk), the system (2.6) is obtained from (2.4) making Ĩ1(u) =
· · · = Ĩk(u) = 0. We now consider the expression for Ĩk+1(u). Recall that
DF (u) : X ⊂ Y → Y is a self-adjoint, Fredholm operator of index 0 and
kerDF (u) is spanned by z1(u) = φ(u). Solvability of

DF (u) · zk+1(u) = −rk+1(u) + Ĩk+1(u) φ(u)

is equivalent to
〈
−rk+1(u) + Ĩk+1(u) φ(u), φ(u)

〉
= 0. As ‖φ(u)‖ = 1, equation

(2.7) holds. �

A brief summary of the constructions in this section is convenient. We
take iterated directional derivatives along of the L2-normalized eigenfunction
φ(u) of two functions, the eigenvalue map λ : X → R and the eigenfunction
map φ : X → X, defining the maps Ĩj and zj. From z1, . . . , zj, we obtained
rj+1 and there are differential equations relating Ĩj, zj and rj: the Dirichlet
functions zj solve a system of equations. Uniqueness of solution definitely does
not hold at a critical point u, as the equation for j = 1 is solved by multiples
of the eigenfunction z1(u) = φ(u).

In the next section, we parameterize the set of solutions to this system in
terms of an initial value problem for the same equations, leading to Proposition
2.3.8, a characterization of functions u ∈ Z(Mk) in terms of the existence of
Dirichlet solutions for the system.

2.3.3
A Characterization of Functions in Z(Mk)

Proposition 2.3.4 leads us to consider a system of differential equations,
which we now study as an initial value problem. More precisely, we relate
vector solutions w and w̃ of the (nonlinear) IVP −y′′j + u yj = −qj, j = 1, . . . , k + 1,

q1 = 0, qj+1 = ∑j
i=1

(
j
i

)
yiyj+1−i, j = 1, . . . , k,

(2.8)

yj(0) = 0, j = 1, . . . , k + 1,

with additional conditions on the derivative,

y′(0) = e1, ỹ′(0) = a ∈ Rk+1, a1 6= 0. (2.9)

Here e1, . . . , ek+1 are the canonical vectors of Rk+1. We write the system in
matrix form. The expressions for qj are quadratic forms on y, qj = qj(y) =
〈Qjy, y〉: Q1 = 0 and, for j ≥ 2, the nonzero entries of the symmetric matrix
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Qj are
(Qj)s,j−s = 1

2

[(
j−1
s

)
+
(
j−1
j−s

)]
. (2.10)

The range of Qj is span{e1, . . . , ej−1}. Write (vj)j for v = (v1, . . . , vk+1), so
that q = q(y) = (〈Qjy, y〉)j. In matrix notation, system (2.8) is

−y′′ + uy = −
(
〈Qjy, y〉

)
j

= −q(y), y(0) = 0.

Proposition 2.3.5 Let w and w̃ be the two solutions of the IVP (2.8). Then
there is a constant lower triangular matrix M for which

w̃ = Mw, q(w̃) = Mq(w),

where

(a) for j = 1, . . . , k + 1, mj,j = aj1 , (b) Me1 = a.

(c) for j ≥ 2 and s ∈ {2, . . . , j}, and any t ∈ {1, . . . , s− 1},

mj,s = 1(
s−1
t

) j−s+t∑
i=t

(
j−1
i

)
mi,t mj−i,s−t .

The proof requires preparation. The lemma below is strictly algebraic.

Lemma 2.3.6 Write q = q(w) =
(
〈Qjw,w〉

)
j
for Qj as above. Then there is

a lower triangular (k + 1)× (k + 1) matrix M for which, for all w ∈ Rk+1,

Mq(w) = q(Mw).

The matrix M is uniquely determined by its first column, provided m1,1 6= 0.
Moreover, mj,j = aj1 6= 0 and thus M is invertible.

We say M is an IVP matrix. Let mi = Mei be the i-th column of M .

Proof. For the bilinear extension b(y, z) =
(
〈Qjy, z〉

)
j
of the quadratic form q,

Mb(y, z) = b(My,Mz), y, z ∈ Rk+1,

and, for arbitrary canonical vectors y = es and z = er, we must then obtain

Mb(es, er) = b(ms,mr), r, s = 1, . . . , k + 1.

For r = 1 and arbitrary s, the expressions become

m1+s = 1
(Qs+1)1,s

b(ms,m1). (2.11)
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Thus m2 is obtained from (the given first column) m1, and m3 from m2,
successively up to mk+1. These formulae define M as a triangular matrix.
Indeed, for some number c, m1+s = c b(m1,ms) = c b(ms,m1). For j = 1,
we have Qj = 0 and (m2)1 = 0. Now induce and use that only the first j − 1
coordinates of Qjm1 are possibly nonzero. From equation (2.11), induction also
yields mj,j = aj1.

The rest of the proof consists of showing that the other restrictions,
obtained by setting r 6= 1 and arbitrary s, are automatically satisfied. We
must prove

mr+s = 1
(Qr+s)r,s

b(ms,mr) , r + s ≤ k + 1 . (2.12)

The restrictions follow from those we have chosen to defineM if we prove that,
for r = 1, . . . , k, s = 2, . . . , k + 1,

1
(Qr+s)r,s

b(mr,ms) = 1
(Qr+s)r+1,s−1

b(mr+1,ms−1)

so that such expressions with constant sum r+s are all equal to the case r = 1,
for arbitrary s. Using equation (2.11) twice, we are left with proving

1
(Qr+s)r,s

(Qs)s−1,1 b(mr, b(ms−1,m1)) = 1
(Qr+s)r+1,s−1 (Qr+1)i,1

b(ms−1, b(mi,m1)).

We check the equality of each coordinate. Again by bilinearity, it suffices to
prove the result by replacing the vectors mr and ms−1 for canonical vectors eR
and eS−1, for indices corresponding to the nontrivial entries of mr and ms−1

(recall the ranges of i and j in the induction hypothesis),

k + 1 ≥ R ≥ r , S − 1 ≥ s− 1 ≥ 1 .

We must prove

1
(Qr+s)r,s (Qj)s−1,1

〈
QjeR,

(
〈Q`eS−1,m1〉

)
`

〉

= 1
(Qr+s)r+1,s−1 (Qr+1)i,1

〈
QjeS−1,

(
〈Q`eR,m1〉

)
`

〉
.

The argument splits in four cases: R < k + 1 or not, S < k + 2 or not.

(I) R ≥ k + 1, S ≥ k + 2
Only the first k first columns ofQj are nonzero. ThusQjeR = QjeS−1 = 0.

(II) R ≥ k + 1, 1 < S < k + 2
Again, the left hand side is zero. We consider the right hand side. We
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have QjeS−1 = c ek+1−S+1, for c 6= 0. But then, up to a nonzero constant, the
rhs is 〈Qk+1−S+1eR,m1〉, and Qk+1−S+1eR is zero if R > k + 1− S + 1.

(III) R < k + 1, S ≥ k + 2
This case is similar to the previous one.

(IV) R < k + 1, 1 < S < k + 2
Here, we have to take into account the constants. We use extensively the

fact that Qmei = (Qm)m−i,iem−i. Simplifying the left hand side,

〈
QjeR,

(
〈Q`eS−1,m1〉

)
`

〉
= (Qj)k+1−R,R 〈Qk+1−ReS−1,m1〉

= (Qj)k+1−R,R (Qk+1−R)k+2−R−S,S−1 (m1)k+2−R−S .

Similarly, in the right hand side,

〈
QjeS−1,

(
〈Q`eR,m1〉

)
`

〉
= (Qj)k+2−S,S−1 (Qk+2−S)k+2−R−S,R(m1)k+2−R−S.

Getting rid of the term (m1)k+2−R−S, we are left with verifying an expression
in the entries of matrices Qm. From the formulas for their entries, we are arrive
at the proof of a combinatorial identity: the product

[(
k

k+1−R

)
+
(
k
R

)] [(
k−R

k+2−R−S

)
+
(
k−R
S−1

)] [(
R+S−1
R+1

)
+
(
R+S−1
S−1

)] [(
R
R

)
+
(
R
1

)]
should equal

[(
k

k+2−S

)
+
(

k
S−1

)] [(
R+S−1

R

)
+
(
R+S−1

S

)] [(
k+1−S

k+2−R−S

)
+
(
k+1−S
R

)] [(
S−1
S−1

)
+
(
S−1

1

)]
.

Start by changing variables S̃ = S − 1 (and then rename S = S̃), obtaining
an expression which is symmetric in R, S = 1, . . . , k. Now use the fact that
each pair of binomials is of the form below, which is easily simplified: for
m+ 1 = a+ b, (

m
a

)
+
(
m
b

)
= m!

(a−1)!+(b−1)!

[
1
a

+ 1
b

]
.

After simplifying factorials, one is left with a cumbersome expression with
simple fractions, whose equality is easily verified. �

We prove Proposition 2.3.5: IVP matrices exist.

Proof. Take w and w̃ as above, so that

−w′′ + uw = −q(w), w(0) = 0, w′(0) = e1,

−w̃′′ + uw̃ = −q(w̃), w̃(0) = 0, w̃′(0) = a.
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Let M be the IVP matrix with m1 = a. To get w̃ = Mw, first multiply
the differential equation for w by M ,

M(−w′′ + uw) = −Mq(w).

Since Mq(w) = q(Mw), −(Mw)′′ + uMw = −q(Mw). As (Mw)′(0) =
Mw′(0) = Me1 = m1 = a then, by uniqueness of solutions of IVP’s, w̃ = Mw.

�

Lemma 2.3.7 Let w1, . . . , wt+1, and w̃1, . . . , w̃t+1 be solutions of the IVP
(2.8). Then, for j = 1, . . . , t + 1, w1, . . . , wj are Dirichlet functions if and
only if the w̃1(u), . . . , w̃j(u) also are.

Proof. The IVP matrix relating both sets of solutions is lower triangular.
�

We characterize u ∈ Z(Mk) in terms of differential equations.

Proposition 2.3.8 For k ≥ 1, u ∈ Z(Mk) if and only if the system
−w′′j + u wj = −hj, j = 1, . . . , k,

h1 = 0, hj =
j−1∑
i=1

(
j−1
i

)
wiwj−i, j = 2, . . . , k,

(2.13)

has Dirichlet solutions wj, j = 1, . . . , k, with w1 6= 0.

Proof. Suppose u ∈ Z(Mk). From Proposition 2.3.4, we obtain the system

−zj(u)′′ + u zj(u) = −rj(u), j = 1, . . . , k, (2.14)

showing that system (2.13) has the required solutions. For the converse, take
Dirichlet solutions w1(u), . . . , wk(u) of system (2.13) with w1(u) 6= 0. We have
to show that u ∈ Z(Mk). Clearly u ∈ Z(M1).

Let k ≥ 2 and u ∈ Z(M`) for some ` = 1, . . . , k − 1. Then, as above,
−zi(u)′′ + u zi(u) = −ri(u), for i = 1, . . . , `. Consider the slightly altered
system −zi(u)′′ + u zi(u) = −ri(u), i = 1, . . . , `,

−z̃`+1(u)′′ + u z̃`+1(u) = −r`+1(u), z̃(u)(0) = 0, z̃(u)′(0) = 0.

From Lemma 2.3.7, as w1(u), . . . , w`+1(u) are Dirichlet functions, a solution
z̃`+1(u) of the above system (having the same potential u as system (2.13)) is
also a Dirichlet function, and therefore Ĩ`+1(u) = 〈r`+1(u), z1(u)〉 = 0. Thus
u ∈ Z(M`+1) and u ∈ Z(Mk) follows by induction. �

The next result will simplify computations considerably later.
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Proposition 2.3.9 (i) Given Dirichlet solutions w1, . . . , wk, wk+1 of system
(2.8) with w1 6= 0, there exist Dirichlet solutions w̃1, . . . , w̃k, w̃k+1, for arbitrary
initial conditions w̃′(1) = a, for a1 6= 0.
(ii) Let w be a vector solution of the IVP (2.8) satisfying w′(0) = e1. Then
there is w̃ satisfying (2.8) such that, at a fixed point x0 for which w′1(x0) 6= 0,
w̃′(x0) = e1.

Proof. The first item is immediate. We consider (ii). From Proposition 2.3.5,
any solution w̃ of (2.8) with w̃(0) = 0 and w̃′(0) = a, a1 6= 0, is of the form
w̃ = Mw where M is a constant invertible lower triangular matrix M , which
is determined by its first column m1 = a. We search for an IVP matrix M0

for which e1 = M0w
′(x0), i.e., such that the first column of its inverse matrix

M−1
0 is w′(x0). We show that there is a unique such matrix.

From equation (2.12) which specifies column mj in terms of mj−1, one
obtains entry i+1 of mj from the first i entries of mj−1. The diagonal entries of
M0 and ofM−1

0 are computed from the first entry of w′(x0). These facts suffice
to compute both M0 and M−1

0 simultaneously. Indeed, assume by induction
that the top j × j blocks of M0 and M−1

0 are computed. Then the last row
of the (j + 1)× (j + 1) block of M0 is known from (2.12), with the exception
of the entry (j + 1, 1), which is obtained from equating entry (j + 1, 1) of the
equalityM0M

−1
0 = I. Inverting, one obtains the (j+1)× (j+1) block ofM−1

0 .
Finally set w̃ = M0w: w̃ solves the IVP (2.8) and w̃′(x0) = M0w

′(x0) =
M0M

−1
0 e1 = e1. �
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3
Every Singularity of F is of Morin type

In this chapter we prove the first item of Theorem 2.3.3: zero is a regular
value of Mk. To obtain DMk at its zeros, we compute in Section 3.1 the
directional derivatives of the functionals Ĩj, the components of Mk. Linear
independence of the gradients is shown in Section 3.2.

3.1
Computing grad Ĩj(u) on Z(Mk) for j ≤ k

Proposition 3.1.1 For u ∈ Z(Mk), there are a1,k, . . . , ak,k ∈ R, with ak,k = 1,
such that, for every nonzero v ∈ X,

k∑
i=1

ai,k ∂v Ĩi(u) = 〈rk+1(u), v〉. (3.1)

There are b1,k, . . . , bk,k ∈ R, with bk,k = 1, such that for every nonzero v ∈ X,

∂v Ĩk(u) =
k∑
i=1

bi,k 〈ri+1(u), v〉. (3.2)

The proof is not by induction. We present the cases k = 1 and k = 2
separately, in order to present arguments employed along the computations.

Proof. Taking the derivative of (2.4) at u ∈ Z(Mk) along v,

DF (u) · ∂vzk(u)

= −vzk(u)− ∂vrk(u)

+
k−1∑
i=0

(
k−1
i

) [
∂v Ĩi+1(u)zk−i(u) + Ĩi+1(u)∂vzk−i(u)

]

= −vzk(u)− ∂vrk(u) +
k−1∑
i=0

(
k−1
i

) [
∂v Ĩi+1(u)

]
zk−i(u).

Taking the L2-inner product with φ(u),
k−1∑
i=0

(
k−1
i

) [
∂v Ĩi+1(u)

]
〈zk−i(u), φ(u)〉

= 〈v, z1(u)zk(u)〉+ 〈∂vrk(u), z1(u)〉.
(3.3)
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For k = 1 the above equation is ∂v Ĩ1(u) = 〈r2(u), v〉: the equation (3.1) then
holds with a1,1 = 1. For k ≥ 2,

∂vrk(u) =
k−1∑
i=1

(
k−1
i

)
[[∂vzi(u)]zk−i(u) + zi(u)[∂vzk−i(u)]]

=
k−1∑
i=1

(
k−1
i

)
[∂vzi(u)]zk−i(u) +

k−1∑
i=1

(
k−1
i

)
zi(u)[∂vzk−i(u)]

=
k−1∑
i=1

(
k−1
i

)
[∂vzi(u)]zk−i(u) +

k−1∑
i=1

(
k−1
k−i

)
[∂vzi(u)]zk−i(u)

=
k−1∑
i=1

(
k
i

)
[∂vzi(u)]zk−i(u),

so that
〈∂vrk(u), z1(u)〉 =

k−1∑
i=1

(
k
i

)
〈∂vzi(u), z1(u)zk−i(u)〉

and now equation (3.3) becomes
k−1∑
i=0

(
k−1
i

) [
∂v Ĩi+1(u)

]
〈zk−i(u), φ(u)〉

= 〈v, z1(u)zk(u)〉+
k−1∑
i=1

(
k
i

)
〈∂vzi(u), z1(u)zk−i(u)〉.

(3.4)

Moreover, for k = 2,
[
∂v Ĩ1(u)

]
〈z2(u), z1(u)〉+

[
∂v Ĩ2(u)

]
〈φ(u), φ(u)〉

= 〈v, z1(u)z2(u)〉+ 2 〈∂vz1(u), z1(u)z1(u)〉

= 〈v, z1(u)z2(u)〉+ 2 〈∂vφ(u), r2(u)〉

= 〈v, z1(u)z2(u)〉+ 2 〈∂vφ(u),−DF (u) · z2(u)〉

= 〈v, z1(u)z2(u)〉+ 2 〈−DF (u) · ∂vφ(u), z2(u)〉

= 〈v, z1(u)z2(u)〉+ 2
〈
vφ(u)− ∂v Ĩ1(u)φ(u), z2(u)

〉
= 〈v, z1(u)z2(u)〉+ 2 〈vz1(u), z2(u)〉 (as 〈φ(u), z2(u)〉 = 0)

= 〈v, 3z1(u)z2(u)〉

= 〈v, r3(u)〉.

Thus (3.1) holds with a1,2 = 〈z2(u), z1(u)〉 and a2,2 = 〈φ(u), φ(u)〉 = 1.

Let k ≥ 3. We drop the dependence on u. We first decrease the largest
index k of the expected answer:
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〈v, rk+1〉 =
〈
v,

k∑
i=1

(
k
i

)
zizk+1−i

〉
=

k∑
i=1

(
k
i

)
〈vzi, zk+1−i〉

= k〈vz1, zk〉+ 〈vzk, z1〉+
k−1∑
i=2

(
k
i

)
〈vzi, zk+1−i〉

= (k + 1)〈v, z1zk〉

+
k−1∑
i=2

(
k
i

)〈
−DF · ∂vzi − ∂vri +

i−1∑
j=0

(
i−1
j

) [
∂v Ĩj+1

]
zi−j, zk+1−i

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈−DF · ∂vzi, zk+1−i〉

−
k−1∑
i=2

(
k
i

)
〈∂vri, zk+1−i〉+

k−1∑
i=2

(
k
i

) i−1∑
j=0

(
i−1
j

) [
∂v Ĩj+1

]
〈zi−j, zk+1−i〉.

Rearranging terms,

〈v, rk+1〉 −
k−1∑
i=2

(
k
i

) i−1∑
j=0

(
i−1
j

) [
∂v Ĩj+1

]
〈zi−j, zk+1−i〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈−DF · ∂vzi, zk+1−i〉

−
k−1∑
i=2

(
k
i

)
〈∂vri, zk+1−i〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi,−DF · zk+1−i〉

−
k−1∑
i=2

(
k
i

)
〈∂vri, zk+1−i〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi, rk+1−i〉

−
k−1∑
i=2

(
k
i

)
〈∂vri, zk+1−i〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

) 〈
∂vzi,

∑k−i
l=1

(
k−i
l

)
zlzk+1−i−l

〉

−
k−1∑
i=2

(
k
i

) 〈∑i−1
l=1

(
i
l

)
(∂vzl)zi−l, zk+1−i

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

k−i∑
l=1

(
k
i

)(
k−i
l

)
〈∂vzi, zlzk+1−i−l〉

−
k−1∑
i=2

i−1∑
l=1

(
k
i

)(
i
l

)
〈∂vzl, zi−lzk+1−i〉.

Now use ∑k−1
i=2

∑i−1
l=1 = ∑k−2

l=1
∑k−1
i=l+1 and

(
k
i

)(
i
l

)
=
(
k
l

)(
k−l
k−i

)
:
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〈v, rk+1〉 −
k−1∑
i=2

(
k
i

) i−1∑
j=0

(
i−1
j

)
[∂vIj+1] 〈zi−j, zk+1−i〉

= (k + 1)〈v, z1zk〉

+
k−1∑
i=2

k−i∑
l=1

(
k
i

)(
k−i
l

)
〈∂vzi, zlzk+1−i−l〉

−
k−2∑
l=1

k−1∑
i=l+1

(
k
l

)(
k−l
k−i

)
〈∂vzl, zi−lzk+1−i〉

= (k + 1)〈v, z1zk〉

+
k−1∑
i=2

k−i∑
l=1

(
k
i

)(
k−i
l

)
〈∂vzi, zlzk+1−i−l〉

−
k−2∑
i=1

k−1∑
l=i+1

(
k
i

)(
k−i
k−l

)
〈∂vzi, zl−izk+1−l〉

= (k + 1)〈v, z1zk〉

+ k〈∂vzk−1, z1z1〉

+
k−2∑
i=2

k−i∑
l=1

(
k
i

)(
k−i
l

)
〈∂vzi, zlzk+1−i−l〉

− k
k−1∑
l=2

(
k−1
k−l

)
〈∂vz1, zl−1zk+1−l〉

−
k−2∑
i=2

k−1∑
l=i+1

(
k
i

)(
k−i
k−l

)
〈∂vzi, zl−izk+1−l〉

= (k + 1)〈v, z1zk〉

+ k〈∂vzk−1, z1z1〉

+
k−2∑
i=2

k−i∑
l=1

(
k
i

)(
k−i
l

)
〈∂vzi, zlzk+1−i−l〉

− k
k−1∑
l=2

(
k−1
k−l

)
〈∂vz1, zl−1zk+1−l〉

−
k−2∑
i=2

k−i−1∑
l=1

(
k
i

)(
k−i
k−l−i

)
〈∂vzi, zlzk+1−l−i〉

= (k + 1)〈v, z1zk〉

+ k〈∂vzk−1, z1z1〉 − k
〈
∂vz1,

k−1∑
l=2

(
k−1
k−l

)
zl−1zk+1−l

〉

+
k−2∑
i=2

(
k
i

) 〈
∂vzi,

∑k−i
l=1

(
k−i
l

)
zlzk+1−l−i

〉

−
k−2∑
i=2

(
k
i

) 〈
∂vzi,

∑k−i−1
l=1

(
k−i
k−i−l

)
zlzk+1−l−i

〉
.
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As
(
k−i
k−i−l

)
=
(
k−i
l

)
,

〈v, rk+1〉 −
k−1∑
i=2

(
k
i

) i−1∑
j=0

(
i−1
j

) [
∂v Ĩj+1

]
〈zi−j, zk+1−i〉

= (k + 1)〈v, z1zk〉+ k〈∂vzk−1, z1z1〉

− k
〈
∂vz1,

k−1∑
l=2

(
k−1
k−l

)
zl−1zk+1−l

〉
+

k−2∑
i=2

(
k
i

)
〈∂vzi,

∑k−i
l=1

(
k−i
l

)
zlzk+1−l−i〉

−
k−2∑
i=2

(
k
i

)
〈∂vzi,

∑k−i−1
l=1

(
k−i
l

)
zlzk+1−l−i〉

= (k + 1)〈v, z1zk〉+ k〈∂vzk−1, z1z1〉 − k
〈
∂vz1,

k−1∑
l=2

(
k−1
k−l

)
zl−1zk+1−l

〉

+
k−2∑
i=2

(
k
i

)
〈∂vzi, zk−iz1〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi, zk−iz1〉 − k

〈
∂vz1,

k−1∑
l=1

(
k−1
k−1−l

)
zlzk−l

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi, zk−iz1〉 − k

〈
∂vz1,

k−1∑
l=1

(
k−1
l

)
zlzk−l

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi, z1zk−i〉

− k
〈
∂vz1,−z1zk−1 +

k−1∑
l=1

(
k−1
l

)
zlzk−l

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=2

(
k
i

)
〈∂vzi, z1zk−i〉

+ k〈∂vz1, z1zk−1〉 − k
〈
∂vz1,

k−1∑
l=1

(
k−1
l

)
zlzk−l

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k

〈
∂vz1,

k−1∑
l=1

(
k−1
l

)
zlzk−l

〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k 〈∂vz1, rk〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k 〈∂vφ,−DF · zk + Ik φ〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k 〈∂vz1,−DF · zk〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k 〈−DF · ∂vz1, zk〉

= (k + 1)〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉 − k 〈vz1, zk〉

= 〈v, z1zk〉+
k−1∑
i=1

(
k
i

)
〈∂vzi, z1zk−i〉.
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By (3.4),

k−1∑
i=0

(
k−1
i

) [
∂v Ĩi+1

]
〈zk−i, φ〉

= 〈v, rk+1〉 −
k−1∑
i=2

i−1∑
j=0

(
k
i

)(
i−1
j

) [
∂v Ĩj+1

]
〈zi−j, zk+1−i〉.

So, equation (3.1) holds and ak,k = 1.
To prove the last statement, consider matrices A = (ai,j) and B = (bi,j).

Clearly B = A−1. Since A is triangular with diagonal entries equal to 1, the
same is true of B. �

The directional derivatives computed above employ the L2-inner product.
Equivalent formulae for the inner product of the ambient space X are obtained
by pulling back the inner product in Y with the isomorphism − d2

dx2 : X → Y .

3.2
Zero is a Regular Value of Mk

There is a well known formula for the solutions of the IVP (2.8) when
w′(0) = e1 in terms of the right hand sides and (independent) solutions ϕ and
ψ of the homogenous equation

−ϕ
′′ + uϕ = 0, ϕ(0) = 0, ϕ′(0) = 1,

−ψ′′ + uψ = 0, ψ(0) = 1, ψ′(0) = 0.

Clearly w1 = ϕ. For j ≥ 2,

wj(x) =
(∫ x

0
hjψ

)
ϕ(x)−

(∫ x

0
hjϕ

)
ψ(x). (3.5)

In Proposition 3.2.2 we prove the linear independence of the set
{h2, . . . , hk+1}, by considering the local behavior of the functions near x = 0.
Let ε > 0 be small enough such that [0, ε] ∩ ϕ−1(0) = {0}. As ϕ′(0) = 1 then
ϕ(x) > 0 on (0, ε]. The expressions

ϕ(x) = x+
∫ x

0

(∫ s

0
u(t)ϕ(t)dt

)
ds, ψ(x) = 1 +

∫ x

0

(∫ s

0
u(t)ψ(t)dt

)
ds

yield
ϕ(x) = x+ o(x2) and ψ(x) = 1 + o(x) as x→ 0. (3.6)

Lemma 3.2.1 Let wj and hj be solutions and right hand sides of system (2.8)
with initial conditions w′(0) = e1. Then there are strictly positive numbers
α1, . . . , αk and β2, . . . , βk+1 such that, as x→ 0, for j = 1, . . . , k,

wj(x) = αjx
3j−2 + o(x3j−1) and hj+1(x) = βj+1x

3j−1 + o(x3j). (3.7)
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Proof. For k = 1, from (3.6), as x→ 0,

w1(x) = ϕ(x) = x+ o(x2), h2(x) = [w1(x)]2 = x2 + o(x3).

So (3.7) holds for k = 1 with α1 = β2 = 1.
Suppose the result for p ≥ 1: we show it for p + 1. From the induction

hypothesis, there are nonzero numbers α1, . . . , αp and β2, . . . , βp+1 such that
(3.7) holds for j = 1, . . . , p. As x→ 0,

hp+1(x)ψ(x) = βp+1x
3p−1 + o(x3p),

hp+1(x)ϕ(x) = βp+1x
3p + o(x3p+1).

Thus
wp+1(x) =

(∫ x

0
hp+1ψ

)
ϕ(x)−

(∫ x

0
hp+1ϕ

)
ψ(x)

=
[
βp+1

3p x
3p + o(x3p+1)

] [
x+ o(x2)

]
−
[
βp+1
3p+1x

3p+1 + o(x3p+2)
] [

1 + o(x1)
]

= βp+1
(

1
3p −

1
3p+1

)
x3p+1 + o(x3p+2) = αp+1x

3(p+1)−2 + o(x3(p+1)−1)

and

hp+2(x) =
p+1∑
i=1

(
p+1
i

)
wi(x)wp+2−i(x)

=
p+1∑
i=1

(
p+1
i

) [
αi x

3i−2 + o
(
x3i−1

)] [
αp+2−i x

3(p+2−i)−2 + o
(
x3(p+2−i)−1

)]

=
p+1∑
i=1

(
p+1
i

) [
αi · αp+2−i x

3(p+1)−1 + o
(
x3(p+1)

)]
= βp+2 x

3(p+1)−1 + o
(
x3(p+1)

)
,

where αp+1 = βp+1
(

1
3p −

1
3p+1

)
> 0 and βp+2 = ∑p+1

i=1

(
p+1
i

)
αi · αp+2−i > 0.

Thus (3.7) also holds for k = p+ 1. �

Proposition 3.2.2 For each k ∈ N, zero is a regular value of Mk : X → Rk.
Hence the sets Z(Mj) are nested manifolds and Σ[k] = Z(Mk). For all u ∈ X,
u ∈ Sk if and only if Mk(u) = 0 and Mk+1(u) 6= 0.

Proof. From Proposition 3.1.1, the set {grad Ĩ1(u), . . . , grad Ĩk(u)} is linearly
independent if and only if the right hand sides {r2(u), . . . , rk+1(u)} of system
(2.14) are. Since IVP matrices are invertible, this in turn is equivalent to
the independence of the right hand sides {h2(u), . . . , hk+1(u)} associated with
solutions wj satisfying

w(0) = 0, w′(0) = e1 , j = 1, . . . , k + 1.

DBD
PUC-Rio - Certificação Digital Nº 1713253/CA



Chapter 3. Every Singularity of F is of Morin type 33

We prove the linear independence of {h2(u), . . . , hk+1(u)}. The case k = 1 is
clear as h2(u) = [w1(u)]2 6= 0. For k ≥ 2, let c2, c3, . . . , ck+1 ∈ R be such that

c2h2 + c3h3 + · · ·+ ck+1hk+1 = 0.

By (3.7), as x→ 0,

c2[β2x
2 + o(x3)] + c3

[
β3x

5 + o(x6)
]

+ · · ·+ ck+1
[
βk+1x

3k−1 + o(x3k)
]

= 0,

where β2, β3, . . . , βk+1 are positive numbers. Clearly c2 = 0 otherwise x2 is an
o(x3)-function, a contradiction. Similarly, c3 = · · · = ck+1 = 0.

From Proposition 2.3.2, Σ[k] = Z(Mk). The last statement is easy. �

At this point we completed the proof of the first two items of Theorem
2.3.3. We next prove item (iii). In Proposition 4.4.2 we prove (iv).

3.3
Every critical point belongs to some Z(Mk) \ Z(Mk+1)

We prove item (iii) of Theorem 2.3.3.

Proposition 3.3.1 For each u ∈ X there is j ∈ N such that Mj(u) 6= 0.

Proof. Suppose by contradiction that there is u0 ∈ X such that Mk(u0) = 0
for all k ∈ N. Hence, for every k ∈ N0,

∂
(k)
φ(u0)Ĩ1(u0) = Ĩk+1(u0) = 0.

From Proposition 2.1.1, Ĩ1 : X → R is a real analytic map when restricted to
the line {u0 + tφ(u0) | t ∈ R}, and thus the function

t ∈ R 7→ Ĩ1(u0 + tφ(u0)) ∈ R

is identically zero: the line u0 + Rφ(u0) is contained in C. For the curve of
eigenfuctions t ∈ R 7→ ω(t) = φ(u0 + tφ(u0)) ∈ X, for t ∈ R,

−ω(t)′′ + [u0 + tφ(u0)]ω(t) = 0.

Setting ω(j)(t) = ∂j

∂tj
ω(t) for j ∈ N0, for every k ∈ N,

−ω(k)(t)′′ + [u0 + tφ(u0)]ω(k)(t) = −kφ(u0)ω(k−1)(t). (3.8)

Define ω1 = ω(0) = φ(u0) and ωk+1 = ω(k)(0). Evaluating (3.8) in t = 0,

−ω′′k+1 + u0 ωk+1 = −kφ(u0)ωk. (3.9)
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As φ(u0 + tφ(u0)) = z1(u0 + tφ(u0)), we have ω(k)(0) = ∂
(k)
φ(u0)z1(u0) and

ωk+1 = ∂
(k)
φ(u0)z1(u0) = zk+1(u0) (k ∈ N).

By (3.9), rk+1(u0) = kφ(u0)zk(u0) and setting k = 2, 3φ(u0)z2(u0) =
2φ(u0)z2(u0). Thus φ(u0)z2(u0) = 0. Since the number of zeros of φ(u0) is
finite, z2(u0) = 0 and then r2(u0) = z2(u0)′′ − u0z2(u0) = 0. As r2(u0) =
z1(u0)2 = φ(u0)2, we derive φ(u0) = 0, a contradiction. �

DBD
PUC-Rio - Certificação Digital Nº 1713253/CA



4
Constructing Singularities of Arbitrary Depth

We prove the second part of Theorem 1.0.2: for k ≥ 1, the operator F
admits a Morin singularity of depth k, i.e., Z(Mk) = Σ[k] is nonempty. The
process is inductive: we show how to obtain a singularity of depth k+1 from a
singularity of depth k. Section 4.2.3 considers the case k odd. The subsequent
sections handle k even, which is harder.

The argument is indirect. From Section 2.3, a Morin singularity of depth
k is a zero of Mk : X → Rk. We first show that this map extends smoothly
to M̂k : Ŷ → Rk, where Ŷ = H−1([0, 1]) = (H1

0 ([0, 1]))∗ is the dual space of
X̂ = H1

0 ([0, 1]) (see [24]). We construct a zero of M̂k+1 and finally a density
argument provides the required singularity in X.

In a nutshell, the problem is discretized: we find zeros of the maps
M̂k given by sums of deltas. Notice that we do not consider extensions of
F : X → Y : the space Ŷ contains distributions and interpretation of the term
f(u) = 1

2u
2 would be required. On the other hand, as it’s shown in the next

section, the relevant spectral properties of the Jacobian DF (u) : X → Y hold
for more general potentials u ∈ Ŷ = H−1([0, 1]).

4.1
Extending Mk

The definition of the maps Mk : X → Rk required two steps. For u ∈ X,
first solve sequentially the initial value problems,

−wj(u)′′ + u wj(u) = −hj(u), w(u)(0) = 0, w(u)′(0) = aj,

where h1(u) = 0, a1 6= 0 and hj(u) = ∑j−1
i=1

(
j−1
i

)
wi(u)wj−i(u) for j = 2, . . . , k.

If w1(u) is Dirichlet then, for j ≥ 2, set Ij(u) = 〈hj(u), ϕ(u)〉. 1 Here ϕ(u)
is the eigenfunction associated to some eigenvalue λ of DF (u) : X → Y

for which ϕ(0) = 0, ϕ′(0) = 1. We now give meaning to both steps for
u ∈ Ŷ = H−1([0, 1]).

1Originally, the functionals Ij were described in terms of a different normalization,
Ij = 〈rj , z1〉. This is not relevant, since both expressions differ by a nonzero multiplicative
factor, so that the common roots Z(Mj) are the same for both definitions.
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Sturm-Liouville problems with potentials in Ŷ , and the related spectral
theory, have been considered recently by a number of authors ([18, 19]). We
provide a sketch of the necessary arguments.

For a smooth function u, the IVP

−w′′ + u w = −h, w(0) = 0, w′(0) = a,

admits an integral counterpart

w(x) = ax+
∫ x

0
ds

∫ s

0
dt [u(t)w(t) + h(t)].

For general u ∈ Ŷ , we have to give meaning to the expression
∫ s
0 u(t)w(t) dt.

Back to the smooth context, we can write, for a primitive U (so that U ′ = u),
∫ s

0
u(t)w(t) dt = U(s)w(s)−

∫ s

0
U(t)w′(t) dt,

where replacing U by U + const has no effect in the expression. In particular,
we may take U (L2-) orthogonal to 1.

Set W = {w ∈ H1([0, 1]) | w(0) = 0}.

Lemma 4.1.1 Let h ∈ W and a ∈ R. For each u ∈ Ŷ the equation

w(x) = ax+
∫ x

0
ds

[
U(s)w(s)−

∫ s

0
U(t)w′(t) dt

]
+
∫ x

0
ds

∫ s

0
h(t) dt

has a unique solution w = w(u) ∈ W, defining a function

w : Ŷ →W , u 7→ w(u),

which is weakly analytic when restricted to lines of Ŷ .

Proof. We leave the details to the reader. The key point is that u ∈ Ŷ is
the (distributional) derivative of a function U ∈ L2([0, 1]) orthogonal to the
constant 1 (orthogonality specifies U uniquely as a smooth function of u). Then
all terms in sight belong to L1 and the standard estimates for the iteration
follow. �

Thus, functions u ∈ Ŷ 7→ wj(u), hj+1(u) ∈ W are well defined and weakly
analytic on lines of Ŷ (recall wj ∈ W , in which multiplication is defined and
continuous, so that hj ∈ W ⊂ Ŷ ).

Let u ∈ Ŷ . To give sense to an eigenfunction ϕ(u), instead of the usual
eigenvalue equation for the Jacobians DF (u) : X → Y , v 7→ −v′′ + uv, we
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consider
(T (u)− λ(u)) · ϕ(u) = 0

for nonzero ϕ(u) ∈ X̂ ⊂ Ŷ and λ(u) ∈ R, where

T (u) : X̂ → Ŷ

w 7→ T (u) · w = 〈w, ·〉X̂ + 〈wu, ·〉.

For w ∈ X̂, wu is the element in Ŷ such that 〈wu, v〉 = 〈u,wv〉 for all v ∈ X̂.
We prove smoothness of the eigenvalue and eigenfunction maps in the

larger setting u ∈ Ŷ as a consequence of the following result, Proposition 16
in [11] (see also [25]) for the current situation.

Proposition 4.1.2 Let T (u∗) ∈ B(X̂, Ŷ ) have eigenvalue λ∗ = 0 ∈ R and
eigenvector ϕ∗ ∈ X̂, so that (T (u∗) − λ∗I)ϕ∗ = 0. Assume that T (u∗) − λ∗I
is a Fredholm operator of index zero with one dimensional kernel, and that
ϕ∗ /∈ Ran(T (u∗) − λ∗I). Let ` ∈ Ŷ = X̂∗ be a linear functional for which
`(ϕ∗) = 1 and set W = ϕ∗ + ker `. Then there is an open neighborhood V ⊂ B
of T (u∗) and unique smooth maps λ : V → R and ϕ : V → W for which
(T − λ(T )I)ϕ(T ) = 0 and λ(T (u∗)) = λ∗, ϕ(T (u∗)) = ϕ∗ with the usual
analytic properties when restricted to lines of Ŷ .

In the case of interest, the operators in V are of the form T (u), u ∈ B ⊂
Ŷ , where B is an open neighborhood of u. The functional ` provides a linear
normalization of the eigenfunction, which simplifies the argument. Clearly,
different choices of a normalization of the eigenvector are innocuous.
Proof. In order to prove smoothness, it suffices to check the hypotheses of the
proposition.

• T (u∗) ∈ B(X̂, Ŷ ).
Begin by the following fact. The multiplication map

X̂ × Ŷ = H1
0 ([0, 1])×H−1([0, 1]) → H−1([0, 1]) = Ŷ

(w, u) 7→ wu

is bi-linear and continuous. Bi-linearity is clear. To show continuity take
(w, u) ∈ X̂ × Ŷ . For every v ∈ X̂,

|〈wu, v〉| = |〈u,wv〉| ≤ ‖u‖Ŷ ‖wv‖X̂ = ‖u‖Ŷ ‖(wv)′‖L2

= ‖u‖Ŷ ‖wv′ + w′v‖L2

≤ ‖u‖Ŷ (‖wv′‖L2 + ‖w′v‖L2)

≤ ‖u‖Ŷ (‖w‖sup‖v′‖L2 + ‖w′‖L2‖v‖sup)

≤ 2‖u‖Ŷ ‖w‖X̂‖v‖X̂ .
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Thus
‖wu‖Ŷ ≤ 2‖w‖X̂‖u‖Ŷ .

Therefore T (u∗) : X̂ → Ŷ is well defined, linear and bounded:

‖T (u∗) · w‖Ŷ ≤ ‖〈w, ·〉X̂‖Ŷ + ‖wu‖Ŷ ≤ ‖w‖X̂ + 2‖w‖X̂‖u∗‖Ŷ
≤ (1 + 2‖u∗‖Ŷ ) ‖w‖X̂ .

• T (u∗)− λ∗ is a Fredholm operator of index zero.
For fixed u ∈ Ŷ , the linear operator w ∈ X̂ 7→ wu ∈ Ŷ is compact with

norm bounded by 2‖u‖Ŷ . Compactness is clear for u ∈ C0, as wu ∈ C0 and the
inclusion C0 ↪→ Ŷ is compact. For u ∈ Ŷ , approximate by continuous functions
and recall that the uniform limit of compact operators is also compact.

Since w ∈ X̂ 7→ 〈w, ·〉X̂ ∈ Ŷ is an isomorphism and w ∈ X̂ 7→ wu∗ ∈ Ŷ
is compact, T (u∗)− λ∗ is a Fredholm operator of index zero.

• dim ker(T (u∗)− λ∗) = 1.
The argument is standard: if there are two independent kernel elements,

there is a kernel element solving the (second order) homogeneous differential
equation with trivial initial conditions at 0.

• ϕ∗ /∈ Ran(T (u∗)− λ∗).
First note that for u ∈ Ŷ , T (u) is symmetric in the sense that, for every

w, v ∈ X̂, 〈T (u) · w, v〉 = 〈T (u) · v, w〉 :

〈T (u) · w, v〉 = 〈w, v〉X̂ + 〈wu, v〉 = 〈w, v〉X̂ + 〈u,wv〉

= 〈v, w〉X̂ + 〈u, vw〉 = 〈v, w〉X̂ + 〈vu, w〉 = 〈T (u) · v, w〉.

Thus, if w ∈ X̂ is such that (T (u∗)− λ∗) · w = ϕ∗ then

0 6= 〈ϕ∗, ϕ∗〉 = 〈(T (u∗)− λ∗) · w,ϕ∗〉 = 〈(T (u∗)− λ∗) · ϕ∗, w〉 = 0.

The proposition then applies, and smoothness of eigenvalue and eigen-
vector maps is proved. �

We finally extend Mk : X → Rk.

Corollary 4.1.3 Let k ∈ N. For u∗ ∈ Ŷ for which λn(u∗) = 0, consider
B ⊂ Ŷ defined in Proposition 4.1.2. For j = 1, . . . , k, the map

Îj : B ⊂ Ŷ → R, u 7→ 〈rj(u), ϕ(u)〉
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is smooth. M̂k = (Î1, . . . , Îk) : B ⊂ Ŷ → Rk is well defined and each coordinate
is analytic on lines of Ŷ ∩B.

Proof. Let u ∈ Ŷ . From the lemma above, for arbitrary choices of initial
conditions aj, we can solve the recursive integral system, obtaining functions
wj(u), rj(u) ∈ X̂. �

We introduce the subspace Xδ ⊂ Ŷ :

Xδ =
{
u ∈ Ŷ

∣∣∣ u =
N∑
i=1

ci δxi
, N ∈ N, ci ∈ R, 0 < x1 < · · · < xN < 1

}
.

For u ∈ H1 + Xδ, the differential equations in the definition of Z(M̂k) are
easily interpreted without referring to their weak versions. More precisely, for
u = ũ+∑N

i=1 ci δxi
,

−w′′ + uw = −h

is a standard differential equation in (0, 1) \ {x1, . . . , xN} and, at xi,

w′(x+
i )− w′(x−i ) = ci w(xi) .

Elements of Xδ contain deltas, but we still call them functions, to distinguish
them from possibly more complicated distributions in Ŷ .

Proposition 4.1.4 The Jacobians of M̂k satisfy the same formula than those
of Mk. For functions u ∈ Xδ ∩ Z(M̂k), zero is a regular value and, near such
points, Z(M̂k) are manifolds.

Proof. The formulae for the directional derivatives of Ij extend by smoothness
of M̂k. Transversality (Proposition 3.2) has been proved by verifying properties
of functions near zero: they are unaltered for u ∈ Xδ. �

We will construct elements of Z(M̂k+1) in Xδ. The space Ŷ is required
because the density argument obtaining a deep singularity u ∈ Z(Mk+1) =
Σ[k+1] ⊂ X cannot start from a space which is not complete, as Xδ.

4.2
Operating with singularities

We introduce some techniques to generate singularities.
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4.2.1
Scaling

The McKean-Scovel operator acts on functions defined in [0, 1]. We
consider the obvious variation: for I = [a, b], XI = H2(I) ∩ H1

0 (I) and
YI = L2(I), FI : XI → YI , u 7→ −u′′ + 1

2u
2. Statements about F convert

easily to FI : the critical set CI of FI consists only of Morin singularities, which
are characterized as zeros of a map Mk,I : XI → Rk, Σ[k]

I = Z(Mk,I). There
are obvious counterparts X̂I , ŶI , X

δ
I .

Proposition 4.2.1 The natural scaling map Ŝ : X̂I → X̂ (resp. the restricted
scaling S : XI → X),

u 7→ v = Ŝ(u), v(x) = (b− a)2 u(a+ (b− a)x) for x ∈ [0, 1],

is a diffeomorphism between Z(M̂k,I) and Z(M̂k) (resp. Z(Mk,I) and Z(Mk)).

Proof. We prove the statement for the restricted scaling, to avoid cluttering the
text with integrals. If u ∈ XI belongs to u ∈ Z(Mk,I) then there are functions
w1(u), . . . , wk(u) ∈ XI , with w1(u) 6= 0, satisfying the recursive system

 −wj(u)′′ + u wj(u) = −hj(u), j = 1, . . . , k,
h1(u) = 0, hj(u) = ∑j−1

i=1

(
j−1
i

)
wi(u)wj−i(u), j ≥ 2.

Set v = S(u). We must find w1(v), . . . , wk(v) ∈ X, with w1(v) 6= 0, for
which  −wj(v)′′ + v wj(v) = −hj(v), j = 1, . . . , k,

h1(v) = 0, hj(v) = ∑j−1
i=1

(
j−1
i

)
wi(v)wj−i(v), j ≥ 2.

Define wj(v) : [0, 1]→ R by

wj(v)(x) =
(

1
b−a

)3j−2
wj(u)(a+ (b− a)x).

If k ≥ 2, for j = 2, . . . , k, a simple computation gives,

hj(v)(x) =
j−1∑
i=1

(
j−1
i

)
wi(v)(x) wj−i(v)(x)

=
(

1
b−a

)3j−4
hj(u)(a+ (b− a)x).

So −wj(v)′′ + v wj(v) = −hj(v), j = 1, . . . , k, and therefore v ∈ Z(Mk).
Similar computations apply to the inverse scaling S−1 : X → XI : S is

indeed a diffeomorphism between the sets Z(Mk,I) and Z(Mk). �

Scaling will be frequently used in the sequel, without explicit mention.
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4.2.2
Juxtaposition

Let u = ∑N
i=1 ci δxi

∈ Xδ
[a,c] and v = ∑M

i=1 di δyi
∈ Xδ

[c,b]. The juxtaposition
(uv) ∈ Xδ

[a,b] is

(uv) =
N+M∑
i=1

ei δzi
,

where

ei, zi =

 ci, xi for i = 1, . . . , N,
di−N , yi−N for i = N + 1, . . . , N +M.

We extend accordingly. For example,

wj(uv) =

 wj(u) if x ∈ [a, c]
wj(v) if x ∈ [c, b]

.

From now on, whenever the information is obvious, we drop the reference
to the underlying interval.

Proposition 4.2.2 Suppose u ∈ Z(M̂k) ∩Xδ
[a,c] and v ∈ Z(M̂k) ∩Xδ

[c,b].

1. (uv) + α δc ∈ Z(M̂k) ∩Xδ
[a,b] for any α ∈ R.

2. If (uv) ∈ Z(M̂k+1) ∩ Xδ
[a,b] then either u, v ∈ Z(M̂k+1) ∩ Xδ or u, v /∈

Z(M̂k+1) ∩Xδ.

Proof. To prove (1), we solve the differential system (2.8) for wj(uv) piecewise,
starting from point c in both cases, as in Proposition 2.3.9. More precisely,
in [a, c], consider Dirichlet solutions wj(u) ∈ X̂[a,c] of system (2.8) with
w′1(u)(c) = 1, w′j(u)(c) = 0, j = 2, . . . , k. In [c, b], solve the system for Dirichlet
solutions wj(v) ∈ X̂[c,b] satisfying w′j(v)(c) = w′j(u)(c). The derivatives of wj
are the same at both sides of c and, close to c, both u and v belong to X
(indeed, they are zero near c). The functions wj(uv)(x) then solve the system in
[a, b] for the potential (uv). Furthermore, the same functions solve the system
also for the potential (uv) + α δc. Indeed, at c, both wj(u) and wj(v) are
zero, and the term α δc is irrelevant in the verification that wj(uv) solves
−wj(uv) +

(
(uv) + α δc

)
wj(uv) = −hj(uv).

To prove (2), let w1(uv), . . . , wk(uv), wk+1(uv) ∈ X̂[a,b], w1(uv) 6= 0,
solve the usual system for the potential (uv). Note that the restrictions of
these functions to the intervals [a, c] and [b, c] solve the usual system for the
potentials u and v, respectively, and since u, v ∈ Z(M̂k) then such restrictions
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are Dirichlet for j = 1, . . . , k. Now

u ∈ Z(M̂k+1)⇔
(
wk+1(uv)�[a,c]

)
(c) = 0

⇔
(
wk+1(uv)�[c,b]

)
(c) = 0⇔ v ∈ Z(M̂k+1).

�

Thus juxtaposition of two functions in Z(M̂k) ∩ Xδ provides a line in
Z(M̂k) ∩ Xδ. Successive juxtapositions yield additional degrees of freedom,
which may be adjusted to obtain a function z satisfying an additional scalar
request, z ∈ Z(M̂k+1)∩Xδ. For odd k, the process is much simpler: this is the
content of Proposition 4.2.3.

4.2.3
Symmetrization: from odd depth k to depth k + 1

Let u = ∑−1
i=−N ci δxi

∈ Xδ
[−1,0]. The symmetrization û ∈ Xδ

[−1,1] of u is
the juxtaposition of u with its reflection ur, û = (uur):

û =
−1∑

i=−N
ci δxi

+
N∑
i=1

ci δxi
,

where, for i = 1, . . . , N , ci = c−i and xi = −x−i.

Proposition 4.2.3 Let k be odd. If u ∈ Z(M̂k) then û ∈ Z(M̂k+1).

Proof. From Proposition 2.3.5 and Corollary 2.3.9, for u ∈ Z(M̂k) the IVP
starting from x = 0 in [−1, 0] admits Dirichlet solutions

−wj(u)′′ + u wj(u) = −hj(u), j = 1, . . . , k,

h1(u) = 0, hj(u) =
j−1∑
i=1

(
j−1
i

)
wi(u)wj−i(u), j = 2, . . . , k,

w1(u)(0) = wj(u)(0) = 0, w1(u)(−1) = wj(u)(−1) = 0, j = 2, . . . , k,

w1(u)′(0) = 1, wj(u)′(0) = 0, j = 2, . . . , k.

A right hand side hk+1 is obtained from the known functions w1, . . . , wk. Using
Proposition 2.3.4, we show that Îk+1(û) = 〈hk+1(û), φ(û)〉 = 0, which then
implies û ∈ Z(M̂k+1).

For j = 1, . . . , k, define the odd extensions wj(û) : [−1, 1]→ R by

wj(û)(x) =

 wj(u)(x) if x ∈ [−1, 0]
(−1)jwj(u)(−x) if x ∈ [0, 1]

.
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From the formulas for hj,

hj(û)(x) =

 hj(u)(x) if x ∈ [−1, 0]
(−1)jhj(u)(−x) if x ∈ [0, 1]

.

Thus, changes of sign of wj(û) and hj(û) are simultaneous and satisfy

−wj(û)′′ + u wj(û) = −hj(û), j = 1, . . . , k

in [−1, 1], as the derivatives of wj(û) at both sides of zero are equal for j = 1 (as
w1 is odd) or, even more, are equal to zero, by the prescribed initial conditions,
for j > 1. Thus, û ∈ M̂k∩Xδ

[−1,1]. Moreover, from the formula, hk+1(û) is even.
Since w1(û) is an odd function, we have Îk+1(û) = 0, as desired. �

4.3
Some deep singularities in Xδ

The results in this chapter were inspired by extensive symbolic computa-
tion. Two key ingredients have been presented: (a) for k odd, symmetrization
allows to obtain singularities of depth k + 1 from singularities of depth k, (b)
juxtaposition generates a line of singularities of depth k, and possibly a choice
of a point in such line is of depth k + 1.

From these ingredients, by sheer computation, potentials uk ∈ Z(M̂k)
up to k = 11 were derived out of the simplest possible eigenfunction (the case
k = 1). More precisely, split Ik = [−2k, 2k] in 2k equal intervals, and assign
2k + 1 deltas at their endpoints (zero at the extremes −2k and 2k). We list the
weights of the deltas, for depth k from 1 to 5.

(0,−2, 0)

(0,−2, 0,−2, 0)

(0,−2, 0,−2, 0,−2,−106/21,−2, 0)

(0,−2, 0,−2, 0,−2,−106/21,−2, 0,−2,−106/21,−2, 0,−2, 0,−2, 0)

(0,−2, 0,−2, 0,−2,−106/21,−2, 0,−2,−106/21,−2, 0,−2, 0,−2, 0,−2, 0,

−2,−30971960/2300571,−2,−106/21,−2, 0,−2,−106/21,−2, 0,−2, 0,−2, 0)

The adjusting points (which may be guessed from the values) are at
entries 6, 20, 88, 336, . . . (entries are counted from 0). Going from k odd to
k + 1 is just symmetrization, other transitions require adjustment. We do not
know if the process continues indefinitely: up to k = 11, the equation for the
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point to choose in the line of potentials in Z(M̂k) is a linear polynomial (!)
with nonzero leading coefficient, and the computation of the adjusting value
is trivial.

In order to complete the proof of Theorem 1.0.2, we must show that
appropriate juxtapositions yield lines giving rise to such simple, solvable
equations. The argument is of an existential nature.

An alternative scenario may serve as a warning. Suppose one searches for
a normal form of deep Morin singularities in Rn for which all Jacobians are
symmetric matrices. The same ingredients used above, starting with

2 −1 0
−1 2 −1
0 −1 2


and the potential u = (−2, 0,−2) (in perfect analogy with the case k = 2
above, as extremal coordinates do not come up in the Dirichlet discretization)
gives rise to a sequence of potentials uk, k = 2, . . . , 6, yielding in turn normal
forms (in R2k−1) of the first Morin singularities. But the computations break
down for k = 7: the linear equation to be solved has zero leading coefficient.

Still, the proof of Theorem 1.0.2 can be adapted to show the existence
of these special normal forms.

In the next section, we introduce the appropriate transversality hypoth-
esis which guarantees that arbitrarily deep singularities may be obtained from
the two basic ingredients.

4.4
Adjustable Functions

We consider adjustable functions. Section 4.4.1 shows how to get functions
in Z(M̂2`+1) from an adjustable function ϑ ∈ Z(M̂2`)∩Xδ. Section 4.4.2 proves
the existence of such ϑ.

Set ` ∈ N. A function ϑ ∈ Z(M̂2`) ∩ Xδ
[a,b] is adjustable at x∗ ∈ (a, b) if

and only if there exist u ∈ Z(M̂`)∩Xδ
[a,x∗] \Z(M̂`+1) and v ∈ Z(M̂`)∩Xδ

[x∗,b] \
Z(M̂`+1) such that ϑ = (uv). We then write ϑ = (u|v). Both u and v have
no term cδx∗ . As we will see, juxtaposition of u and v then yields a line in
Z(M̂2`) ∩Xδ

[a,b] through ϑ containing an element ϑ∗ ∈ Z(M̂2`+1). The number
x∗ is called the adjustment point of ϑ.
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4.4.1
From even k to k + 1

The whole section is dedicated to the proof of Proposition 4.4.2.

Lemma 4.4.1 Let M be an IVP matrix with first column given by

m1 = (1, 0, . . . , 0,m`+1,1, . . . ,m2`+1,1) .

Then

1. mj,j = 1, j = 1, . . . , 2`+ 1.

2. mj,s = 0, s = 2, . . . , 2`, j = s+ 1, . . . ,min{s+ `− 1, 2`+ 1}.

3. m`+p+1,p+1 = c`,p ·m`+1,1, c`,p 6= 0, p = 1, . . . , `.

Recall that M is a lower triangular matrix. For ` ≥ 2,

M =



1
0 . . .

m`+1,1 1
... . . . 0 . . .

m2`+1,1 · · · m2`+1,`+1 0 1


(2`+1)×(2`+1)

.

Proof. From Proposition 2.3.5, for s ≥ 2 and j ≥ s,

mj,s = 1
s−1

j−s+1∑
i=1

(
j−1
i

)
mi,1 mj−i,s−1.

Recall that mi,1 = 0 for 2 ≤ i ≤ `.

1. Indeed, mj,j = (m1,1)j.

2. For 2 ≤ s ≤ `+ 1 or `+ 2 ≤ s ≤ 2` we have 2 ≤ j − s+ 1 ≤ `. Then

mj,s = 1
s− 1

j−s+1∑
i=1

(
j−1
i

)
mi,1 ·mj−i,s−1 = j−1

s−1 mj−1,s−1.

Iterate: mj,s = 0, from mi,1 = 0 for 2 ≤ i ≤ `.

3. If p = 1, . . . , `,

m`+p+1,p+1 = 1
p

`+1∑
i=1

(
`+p
i

)
mi,1 ·m`+p+1−i,p

= `+p
p
m1,1 ·m`+p,p + 1

p

(
`+p
`+1

)
m`+1,1 ·mp,p

= `+p
p
m`+p,p + 1

p

(
`+p
`+1

)
m`+1,1.
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By induction, m`+p+1,p+1 = (p+1)
(∏p+1

i=2
`+i
i

)
m`+1,1 = c`,p ·m`+1,1, where

c`,p = (p+ 1)
(∏p+1

i=2
`+i
i

)
6= 0 only depends of ` and p.

�

Proposition 4.4.2 If there is an adjustable function in Z(M̂2`), then
Z(M̂2`+1) is not empty.

Proof. Set ` ≥ 1 and let ϑ ∈ Z(M̂2`) ∩ Xδ be an adjustable function with
adjustment point x∗ ∈ (0, 1). Let also

w(ϑ) = (w1(ϑ), . . . , w2`(ϑ), w2`+1(ϑ)) : [0, 1]→ R2`+1,

with w1(ϑ) 6= 0, solving

−w(ϑ)′′ + ϑ w(ϑ) = −q(w(ϑ)), w(ϑ)(0) = 0. (4.1)

Since ϑ ∈ Z(M̂2`), by Proposition 2.3.7, the first 2` components of w(ϑ)
are Dirichlet. Note that w2`+1(ϑ)(1) is not necessarily zero: we only know
ϑ ∈ Z(M̂2`). Moreover, as ϑ is adjustable and different solutions of the system
(4.1) are related by (lower triangular) IVP matrices, we have

w1(ϑ)(x∗) = · · · = w`(ϑ)(x∗) = 0 and w`+1(ϑ)(0) 6= 0.

Set α = w(ϑ)(x∗): we have α1 = · · · = α` = 0 and α`+1 6= 0. Also, from
Proposition 2.3.9, w(ϑ) can be chosen so that

w(ϑ)′(x∗) = e1 ∈ R2`+1.

Consider the line

C ∈ R 7→ ϑ(C) = ϑ+ C · δx∗ ∈ Xδ.

We have that to find w(ϑ(C)) : [0, 1] → R2`+1, with w1 6= 0 and Dirichlet
components wj, j = 1, . . . , 2k, which solves

−w(ϑ(C))′′ + ϑ(C) w(ϑ(C)) = −q(w(ϑ(C))), w(ϑ(C))(0) = 0. (4.2)

Clearly, the solution must be continuous and also must take into account the
jump in the derivative at x∗,

w(ϑ(C))′(x+
∗ ) = w(ϑ(C))′(x−∗ ) + C · w(ϑ(C))(x∗). (4.3)
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We define w(ϑ(C)) such that w(ϑ(C)) = w(ϑ) in [0, x∗]. The required
jump of the derivative at x∗ is given by

w(ϑ(C))′(x+
∗ ) = e1 + C · α.

Let M be the (2` + 1) × (2` + 1) IVP matrix such that Mw(ϑ)′(x∗) =
e1 + C · α. As w(ϑ)′(x∗) = e1 then m1 = Me1 = e1 + C · α, i.e.,

m1 = (1, 0, . . . , 0, C · α`+1, . . . , C · α2`+1), α`+1 6= 0,

and, in particular, m`+1,1 = C ·α`+1. In the interval [x∗, 1], the functions w(ϑ)
and Mw(ϑ) at x∗ may be different. From the form of the IVP matrix M

(Lemma 4.4.1) and since m2`+1,`+1 = c`,` ·m`+1,1, c`,` 6= 0 (item (3)),

Mw(ϑ)(x∗)− w(ϑ)(x∗) = Mα− α

= m2`+1,`+1 · α`+1 e2`+1

= c`,` ·m`+1,1 · α`+1 e2`+1

= c`,` · (α`+1)2 · C e2`+1

= A2`+1 · C e2`+1,

where A2`+1 = c`,` · (α`+1)2 6= 0 does not depend of C.

Now define

w(ϑ(C)) =

 w(ϑ) if x ∈ [0, x∗]
Mw(ϑ)− A2`+1 · C · ψ(ϑ) e2`+1 if x ∈ [x∗, 1]

,

where ψ(ϑ) : [x∗, 1]→ R solves

−ψ(ϑ)′′ + ϑ ψ(ϑ) = 0, ψ(ϑ)(x∗) = 1, ψ(ϑ)′(x∗) = 0.

Clearly w(ϑ(C)) solves (4.2), is continuous and the jump (4.3) of the
derivative is satisfied, as ψ(ϑ)′(x∗) = 0. Moreover, the first 2` components of
w(ϑ(C)) are Dirichlet (Proposition 2.3.7).

To handle the last component, we start by proving the following fact:
w2`+1(ϑ(C))(1) is a non-constant linear polynomial in the variable C.

First recall that ψ(ϑ) solves −z′′ + ϑ z = 0 in [x∗, 1], with ψ(ϑ)(x∗) = 1,
ψ(ϑ)′(x∗) = 0. Also, w1(ϑ) is a Dirichet solution to the same equation. From
the Wronskian identity, ψ(ϑ)(1) 6= 0. Therefore A2`+1 · ψ(ϑ)(1) 6= 0 and
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w2`+1(ϑ(C))(1) = 〈e2`+1,Mw(ϑ)(1)〉 − A2`+1 · C · ψ(ϑ)(1)

= 〈Me2`+1, w(ϑ)(1)〉 − A2`+1 · C · ψ(ϑ)(1)

= 〈e2`+1, w(ϑ)(1)〉 − A2`+1 · C · ψ(ϑ)(1).

= w2`+1(ϑ)(1)− A2`+1 · C · ψ(ϑ)(1).

As w2`+1(ϑ)(1) is a constant which does not depend of C, we are done.

We are ready to complete the proof of the proposition. From the fact
above, we can choose C = C∗ such that w2`+1(ϑ(C∗))(1) = 0 and therefore,
for ϑ∗ = ϑ(C∗) = ϑ + C∗ · δx∗ , all the components of w(ϑ∗) are Dirichlet: ϑ∗

belongs to Z(M̂2`+1) ∩Xδ. �

4.4.2
Existence of Adjustable Functions

In Proposition 4.4.5 we obtain adjustable functions in Z(M̂2`) ∩ Xδ for
` ∈ N. As an example, which is also the first step in the inductive argument,
we show how to obtain an adjustable function in Z(M̂2)∩Xδ. In other words,
we show that there are u, v ∈ Z(M̂1) ∩Xδ \ Z(M̂2) such that (u|v) ∈ Z(M̂2).

Set u = −2 δ−1 ∈ Xδ
[−2,0] and let w1(u) : [−2, 0]→ R solves the IVP

−w1(u)′′ + u w1(u) = 0, w1(u)(−2) = 0, w1(u)′(−2) = 1.

Thus

w1(u)(x) =

 2 + x if x ∈ [−2,−1]
−x if x ∈ [−1, 0]

.

Since w1(u) also satisfies the Dirichlet condition, u ∈ Z(M̂1) and w1(u)
is an eigenfunction associated to λ = 0. Moreover, w1(u) does not change
sign in [−2, 0], so that Î2(u) =

∫ 0
−2w1(u)3 6= 0 and therefore u /∈ Z(M̂2).

Let ur ∈ Z(M̂1) ∩ Xδ
[0,2] be the reflection of u. Clearly ur /∈ Z(M̂2) and

ϑ = û = (u|ur) ∈ Xδ
[−2,2]. By symmetrization (Proposition 4.2.3), ϑ ∈ Z(M̂2)

and is adjustable at x∗ = 0.

The following result is standard.

Lemma 4.4.3 Xδ is dense in Ŷ .

We also employ the following density theorem ([14, 12]).

Theorem 4.4.4 Let X be a Banach space, D a dense subspace of X and M
a smooth submanifold of finite codimension of X. Then M ∩D is dense in M .
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If ϑ = (u|v) ∈ Z(M̂2`) is adjustable, we also write ϑ∗ ∈ Z(M̂2`+1)
obtained in the previous section as ϑ∗ = (u ↑ v).

Proposition 4.4.5 For ` ∈ N, if Z(M2`) is nonempty, there exists an
adjustable function ϑ ∈ Z(M̂2`) ∩Xδ.

Proof. The proof is by induction. The case ` = 1 was shown above. Suppose
the statement holds for ` = 1, . . . , p − 1 (p ≥ 2). Let Z(M2p) 6= ∅. We must
find an adjustable function ϑ2p ∈ Z(M̂2p) ∩Xδ.

As the Z(Mj)’s are nested then Z(Mp) is non-empty and therefore
Z(Mp) \ Z(Mp+1) 6= ∅. Let ũ ∈ Z(Mp) \ Z(Mp+1). For concreteness, suppose
that ũ is defined in the interval2 [−1, 0]. Since Xδ is dense in Ŷ , by density
(Theorem 4.4.4), there is u ∈ Z(M̂p) \ Z(M̂p+1) ∩ Xδ near ũ. Let ur be the
reflection of u. Then ur, (uur) ∈ Z(M̂p). We first prove that, for some v∗1 ∈ Xδ,
we have (uv∗1) ∈ Z(M̂p+1) ∩Xδ.

• For odd p, (uur) ∈ Z(M̂p+1) ∩ Xδ (symmetrization, Proposition 4.2.3).
Take v∗1 = ur.
• For even p, we must work harder. As p/2 ∈ {1, . . . , p − 1}, from the

inductive hypothesis, take an adjustable ϑp = (up|vp) ∈ Z(M̂p) ∩ Xδ

with up, vp ∈ Z
(
M̂ p

2

)
∩ Xδ \ Z

(
M̂ p

2 +1

)
. Then, by the properties of

juxtaposition (Proposition 4.2.2),

ũp = ((uur)up) = (u(urup)) ∈ Z
(
M̂ p

2

)
∩Xδ \ Z

(
M̂ p

2 +1

)
and, as (uur), ϑp ∈ Z(M̂p),

((uur)ϑp) = (((uurup)vp) = (ũpvp) ∈ Z(M̂p) ∩Xδ.

Thus (ũp|vp) ∈ Z(M̂p) ∩ Xδ is adjustable. From Proposition 4.4.2, we obtain
(ũp ↑ vp) = (uvup ↑ vp)) ∈ Z(M̂p+1) ∩Xδ.

In both cases, for v∗1 = ur ∈ Xδ or ((vup) ↑ vp) ∈ Xδ, respectively, we
have (uv∗1) ∈ Z(M̂p+1) ∩Xδ.

In order to obtain the adjustable function ϑ2p ∈ Z(M2p)∩Xδ, we obtain
sequentially, for q = 1, . . . , p, adjustable functions ϑp+q ∈ Z(Mp+q) ∩Xδ. The
starting point of the induction q = 1 is the first step above.

Suppose by induction that, for q = 1, . . . , p − 1, there is v∗q ∈ Xδ such
that (u|v∗q ) ∈ Z(M̂p+q) ∩Xδ. We follow closely the argument above.

2Still, we drop references to it: new operations will naturally change the domains of
definition of the functions of interest, and we systematically invoke implicitly the invariance
of singularity depth under scaling (Proposition 4.2.1).
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• If p+ q is odd,

((uv∗q )θq) = (u(v∗qθq)) ∈ Z(M̂p+q+1) ∩Xδ,

where θq = (uv∗q )r is the reflection of (uv∗q ).
• If p + q is even, take an adjustable ϑp+q = (up+q|vp+q) ∈ Z(M̂p+q) ∩Xδ

for up+q, vp+q ∈ Z
(
M̂ p+q

2

)
∩Xδ \ Z

(
M̂ p+q

2 +1

)
. Then

ũp+q = ((uv∗q )up+q) = (u(v∗qup+q)) ∈ Z
(
M̂ p+q

2

)
∩Xδ \ Z

(
M̂ p+q

2 +1

)
and

((uv∗q )ϑp+q) = (((uv∗q )up+q)|vp+q) = (ũp+q|vp+q) ∈ Z(M̂p+q) ∩Xδ.

Thus (ũp+q|vp+q) ∈ Z(M̂p+q) ∩Xδ is adjustable and therefore (ũp+q ↑ vp+q) =
(u((v∗qup+q) ↑ vp+q)) ∈ Z(M̂p+q+1) ∩Xδ.

Again, for v∗q+1 = (uv∗q )r ∈ Xδ or ((v∗qup+q) ↑ vp+q) ∈ Xδ, we have
(uv∗q+1) ∈ Z(M̂p+q+1) ∩Xδ. The proof of the inductive step is complete.

By setting q = p − 1, we obtain a function v∗p ∈ Xδ such that
(uv∗p) ∈ Z(M̂2p) ∩ Xδ. Since u ∈ Z(M̂p) ∩ Xδ \ Z(M̂p+1), by Proposition
4.2.2, we also have v∗p ∈ Z(M̂p) ∩Xδ \ Z(M̂p+1): ϑ2p = (u|v∗p) ∈ Z(M̂2p) ∩Xδ

is adjustable. �

4.5
There exist Morin singularities of arbitrary depth

We are ready to prove the second part of Theorem 1.0.2: F admits Morin
singularities of arbitrary depth, i.e., Z(Mk) 6= ∅ for all k ≥ 1. As Z(M1) 6= ∅
all we need is the inductive step below.

Proposition 4.5.1 For each k ∈ N, Z(Mk) 6= ∅ implies Z(Mk+1) 6= ∅.

Proof. Let k ∈ N and suppose Z(Mk) 6= ∅. Since Z(Mk) ⊂ X ⊂ Ŷ , then
Z(M̂k) ∩Xδ 6= ∅ by density (Theorem 4.4.4).

If k is odd, Z(M̂k+1) ∩Xδ 6= ∅, by symmetrization (Proposition 4.2.3).
If k is even, there exists an adjustable function in Z(M̂k) ∩Xδ (Propo-

sition 4.4.5) which in turn yields a function u ∈ Z(M̂k+1) ∩ Xδ (Proposition
4.4.1).

The density argument (Theorem 4.4.4) applies since, near u, Z(M̂k+1) is
a submanifold of Ŷ of finite codimension (Proposition 4.1.4) and X is dense
in Ŷ : X ∩ Z(M̂k+1) = Z(Mk+1) is nonempty. �

The proof of Theorem 1.0.2 is complete.
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4.6
An application of Theorem 1.0.2

McKean and Scovel [6] proved that each g ∈ Y has at most a finite
number of pre-images in X under F . This number can be arbitrarily large, as
shown by a more general result by Ruf and Solimini [16]. Here, we show that
an arbitrarily large number of solutions may be arbitrarily close to each other.

Corollary 4.6.1 Given k ∈ N and ε > 0, there exists g ∈ Y such that

−u′′ + 1
2u

2 = g, u ∈ X,

has k + 1 solutions which are at most ε apart.

Proof. Let u∗ ∈ X be a Morin singularity of depth k and consider the
normal form of F near u∗, given in equation (1.1). Now choose small numbers
s1, . . . , sk−1 for which the polynomial tk+1 +s1t

k−1 +s2t
k−2 +sk−1t admits some

value with k + 1 preimages. �
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